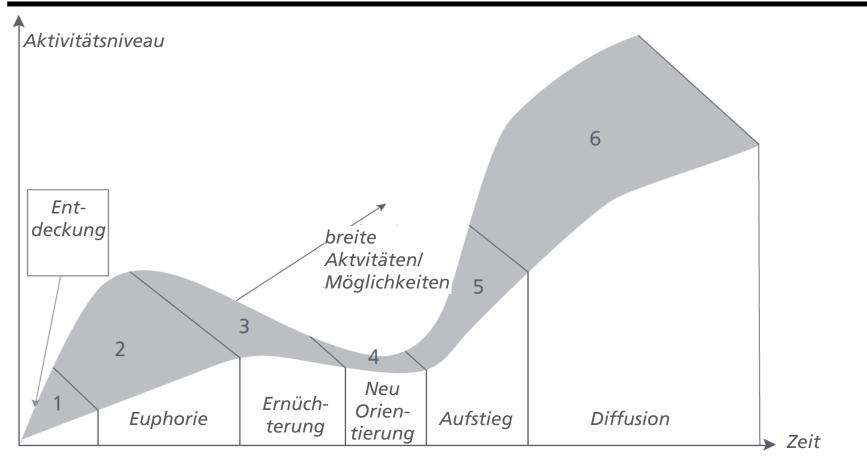

INNOVATIVE MATERIALIEN FÜR EINE NACHHALTIGERE WASSERWIRTSCHAFT

Frank Marscheider-Weidemann, Thomas Hillenbrand Fraunhofer-Institut für System- und Innovationsforschung (ISI)

MachWasPlus Arbeiten zu "Innovations- und Umwelteffekten von MachWas-Materialien"

- Potentialabschätzung der Nachhaltigkeitseffekte der BMBF-Fördermaßnahme "MachWas – Materialien für eine nachhaltige Wasserwirtschaft" im Begleitvorhaben MachWasPlus
- Erhebung der Effekte zusammen mit den 13 Verbünden
- Tool mit quantitativen und qualitativen Fragen zur Tiefenerhebung bei den Verbünden
- Beitrag der Verbünde als Ganzes zu den Förderzielen

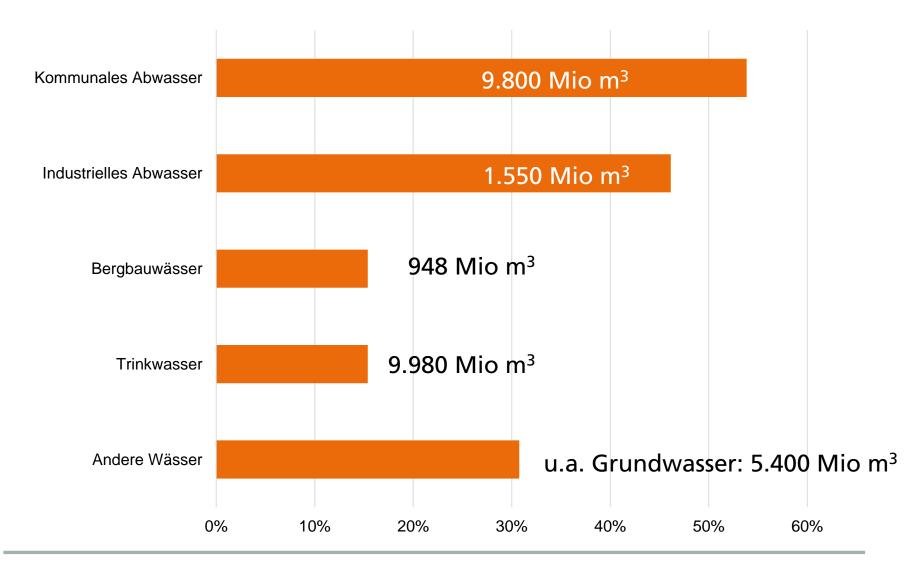
Zukunftsthemen in der nachhaltigen Wasserwirtschaft


- Integrierte Infrastruktursysteme für urbane Räume
- Flexible Wasser-Infrastruktursysteme
- Adaption der Wasserinfrastruktur an den demographischen Wandel und Klimaschutz
- Ökoeffiziente Nutzung von Wässern unterschiedlicher Qualitäten
- Bedarfsgerechte Bewässerungssysteme "Precision Irrigation"
- Nutzung der im Abwasser enthaltenen Ressourcen (Wärme, Nährstoffe...)
- Meerwasserentsalzung mithilfe erneuerbarer Energien
- Entfernung von Mikroverunreinigungen aus Abwässern

Source: Foresight-Prozess BMBF, Roadmap Umwelttechnologien 2020

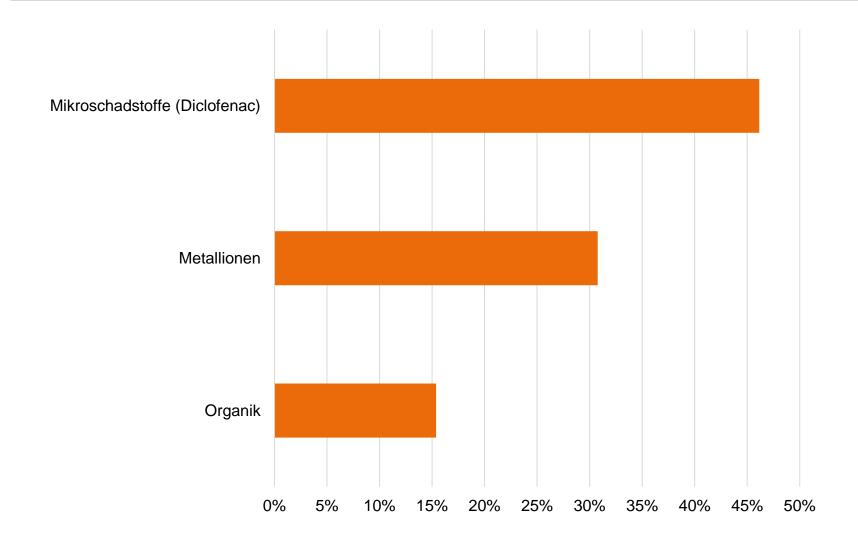
Technikzyklusmodel 6-Phasen-Innovations-Model

Source: Meyer-Krahmer F.; Dreher C. (2004): Neuere Betrachtungen zu Technikzyklen und Implikationen für die Fraunhofer-Gesellschaft. In: Spath, D. (Hg.): Forschungs- und Technologiemanagement: Potenziale nutzen – Zukunft gestalten. München, S. 27–35; Thielmann A. et al. (2009), Innovationsreport: Blockaden bei der Etablierung neuer Schlüsseltechnologien. Im Auftrag des Büros für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB), Arbeitsbericht Nr. 133, Juli 2009;


Muster und typische Charakteristiken von Publikationen und Patent Verläufen

Das Technikzyklusmodell hat sich in spezifischen Publikations- und Patentmustern bewährt:

- Technologische Trends folgen typischerweise wissenschaftlichen Trends.
- Stagnation der wissenschaftlichen Trends vor dem ersten Patentboom und Beschleunigung vor dem zweiten Patentboom
- Forschungsaktivitäten schwanken weniger als Patentaktivitäten, da Unternehmen schneller reagieren, wenn die erwarteten technologischen und kommerziellen Ergebnisse nicht in relativ kurzer Zeit erreicht werden können
- Ein Technologiezyklus ist lang: typischerweise 15 Jahre oder mehr zwischen dem ersten und zweiten Boom (realistisch: insgesamt 30 bis 40 Jahre oder sogar länger)
- Es entstehen keine substanziellen Märkte vor dem zweiten technologischen Boom


Verbundprojekte behandelten folgende Medien

Zielsubstanzen der Verbünden

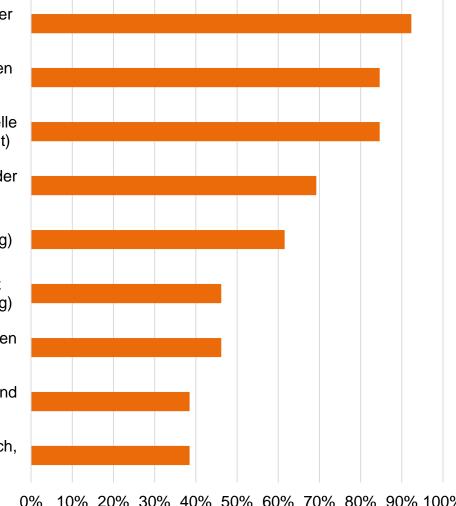
Verbundprojekte liefern Beiträge zu

Erhöhung der Wirtschaftlichkeit (ggf. unter Berücksichtigung von Skaleneffekte)

Verbesserung der Leistungsfähigkeit der Materialien (Selektivität/Aktivität, Beständigkeit/Stablität)

> Marktpotenzial verbessern (potentielle Anwendungsbreite, Übertragbarkeit)

Reduzierung von Emissionen in Grundwasser und/oder Oberflächengewässer


Materialeffizienz (Materialeinsparung, Recycling)

Verbesserung der die Wassernutzungseffizienz (Einsparung, Kaskadennutzung / Kreislaufführung)

Die gesellschaftliche Bedeutung der Technologien (Qualität und Anzahl von Arbeitsplätzen)

Optimierte Wasseraufbereitung für Trink- und Brauchwasser

> Energieeffizienz (Stromverbrauch, Wärmerückgewinnung)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Weiteres Vorgehen

- Besuch des ersten Verbundes zur Datenerhebung und Testen des Tools im Juli
- Treffen mit einem zweitem Verbund im Spätsommer
- Aggregation der Ergebnisse
- nächstes Treffen der Arbeitsgruppe zum Querschnittsthema "Innovationsund Umwelteffekte von MachWas-Materialien" am 4. Dezember 2018 geplant

